Lesson No. 07

1.1. Register + Offset Addressing

Direct addressing and indirect addressing using a single register are two basic forms of memory access. Another possibility is to use different combinations of direct and indirect references. In the above example we used BX to access different array elements which were placed consecutively in memory like an array. We can also place in BX only the array index and not the exact address and form the exact address when we are going to access the actual memory. This way the same register can be used for accessing different arrays and also the register can be used for index comparison like the following example does.

	
	Example 2.8

	001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018
	; a program to add ten numbers using register + offset addressing

[org 0x0100]

 mov bx, 0 ; initialize array index to zero

 mov cx, 10 ; load count of numbers in cx

 mov ax, 0 ; initialize sum to zero

l1: add ax, [num1+bx] ; add number to ax

 add bx, 2 ; advance bx to next index

 sub cx, 1 ; numbers to be added reduced

 jnz l1 ; if numbers remain add next

 mov [total], ax ; write back sum in memory

 mov ax, 0x4c00 ; terminate program

 int 0x21

num1: dw 10, 20, 30, 40, 50, 10, 20, 30, 40, 50

total: dw 0

	003
	This time BX is initialized to zero instead of array base

	007
	The format of memory access has changed. The array base is added to BX containing array index at the time of memory access.

	008
	As the array is of words, BX jumps in steps of two, i.e. 0, 2, 4. Higher level languages do appropriate incrementing themselves and we always use sequential array indexes. However in assembly language we always calculate in bytes and therefore we need to take care of the size of one array element which in this case is two.

Inside the debugger we observe that the memory access instruction is shown as “mov ax, [011F+bx]” and the actual memory accessed is the one whose address is the sum of 011F and the value contained in the BX register. This form of access is of the register indirect family and is called base + offset or index + offset depending on whether BX or BP is used or SI or DI is used.

1.2. Segment Association

All the addressing mechanisms in iAPX88 return a number called effective address. For example in base + offset addressing, neither the base nor the offset alone tells the desired cell in memory to be accessed. It is only after the addition is done that the processor knows which cell to be accessed. This number which came as the result of addition is called the effective address. But the effective address is just an offset and is meaningless without a segment. Only after the segment is known, we can form the physical address that is needed to access a memory cell.

We discussed the segmented memory model of iAPX88 in reasonable detail at the end of previous chapter. However during the discussion of addressing modes we have not seen the effect of segments. Segmentation is there and it’s all happening relative to a segment base. We saw DS, CS, SS, and ES inside the debugger. Everything is relative to its segment base, even though we have not explicitly explained its functionality. An offset alone is not complete without a segment. As previously discussed there is a default segment associated to every register which accesses memory. For example CS is associated to IP by default; rather it is tied with it. It cannot access memory in any other segment.

In case of data, there is a bit relaxation and nothing is tied. Rather there is a default association which can be overridden. In the case of register indirect memory access, if the register used is one of SI, DI, or BX the default segment is DS. If however the register used in BP the default segment used is SS. The stack segment has a very critical and fine use and there is a reason why BP is attached to SS by default. However these will be discussed in detail in the chapter on stack. IP is tied to CS while SP is tied to SS. The association of these registers cannot be changed; they are locked with no option. Others are not locked and can be changed.

To override the association for one instruction of one of the registers BX, BP, SI or DI, we use the segment override prefix. For example “mov ax, [cs:bx]” associates BX with CS for this one instruction. For the next instruction the default association will come back to act. The processor places a special byte before the instruction called a prefix, just like prefixes and suffixes in English language. No prefix is needed or placed for default association. For example for CS the byte 2E is placed and for ES the byte 26 is placed. Opcode has not changed, but the prefix byte has modified the default association to association with the desired segment register for this one instruction.

In all our examples, we never declared a segment or used it explicitly, but everything seemed to work fine. The important thing to note is that CS, DS, SS, and ES all had the same value. The value itself is not important but the fact that all had the same value is important. All four segment windows exactly overlap. Whatever segment register we use the same physical memory will be accessed. That is why everything was working without the mention of a single segment register. This is the formation of COM files in IBM PC. A single segment contains code, data, and the stack. This format is operating system dependant, in our case defined by DOS. And our operating system defines the format of COM files such that all segments have the same value. Thus the only meaningful thing that remains is the offset.

For example if BX=0100, SI=0200, and CS=1000 and the memory access under consideration is [cs:bx+si+0x0700], the effective address formed is bx+si+0700 = 0100 + 0200 + 0700 = 0A00. Now multiplying the segment value by 16 makes it 10000 and adding the effective address 00A00 forms the physical address 10A00.

1.3. Address Wraparound

There are two types of wraparounds. One is within a single segment and the other is inside the whole physical memory. Segment wraparound occurs when during the effective address calculation a carry is generated. This carry is dropped giving the effect that when we try to access beyond the segment limit, we are actually wrapped around to the first cell in the segment. For example if BX=9100, DS=1500 and the access is [bx+0x7000] we form the effective address 9100 + 7000 = 10100. The carry generated is dropped forming the actual effective address of 0100. Just like a circle when we reached the end we started again from the beginning. An arc at 370 degrees is the same as an arc at 10 degrees. We tried to cross the segment boundary and it pushed us back to the start. This is called segment wraparound. The physical address in the above example will be 15100.

The same can also happen at the time of physical address calculation. For example BX=0100, DS=FFF0 and the access under consideration is [bx+0x0100]. The effective address will be 0200 and the physical address will be 100100. This is a 21bit answer and cannot be sent on the address bus which is 20 bits wide. The carry is dropped and just like the segment wraparound our physical memory has wrapped around at its very top. When we tried to access beyond limits the actual access is made at the very start. This second wraparound is a bit different in newer processor with more address lines but that will be explained in later chapters.

1.4. Addressing Modes Summary

The iAPX88 processor supports seven modes of memory access. Remember that immediate is not an addressing mode but an operand type. Operands can be immediate, register, or memory. If the operand is memory one of the seven addressing modes will be used to access it. The memory access mechanisms can also be written in the general form “base + index + offset” and we can define the possible addressing modes by saying that any one, two, or none can be skipped from the general form to form a legal memory access.

There are a few common mistakes done in forming a valid memory access. Part of a register cannot be used to access memory. Like BX is allowed to hold an address but BL or BH are not. Address is 16bit and must be contained in a 16bit register. BX-SI is not possible. The only thing that we can do is addition of a base register with an index register. Any other operation is disallowed. BS+BP and SI+DI are both disallowed as we cannot have two base or two index registers in one memory access. One has to be a base register and the other has to be an index register and that is the reason of naming them differently.

Direct

A fixed offset is given in brackets and the memory at that offset is accessed. For example “mov [1234], ax” stores the contents of the AX registers in two bytes starting at address 1234 in the current data segment. The instruction “mov [1234], al” stores the contents of the AL register in the byte at offset 1234.

Based Register Indirect

A base register is used in brackets and the actual address accessed depends on the value contained in that register. For example “mov [bx], ax” moves the two byte contents of the AX register to the address contained in the BX register in the current data segment. The instruction “mov [bp], al” moves the one byte content of the AL register to the address contained in the BP register in the current stack segment.

Indexed Register Indirect

An index register is used in brackets and the actual address accessed depends on the value contained in that register. For example “mov [si], ax” moves the contents of the AX register to the word starting at address contained in SI in the current data segment. The instruction “mov [di], ax” moves the word contained in AX to the offset stored in DI in the current data segment.

Based Register Indirect + Offset

A base register is used with a constant offset in this addressing mode. The value contained in the base register is added with the constant offset to get the effective address. For example “mov [bx+300], ax” stores the word contained in AX at the offset attained by adding 300 to BX in the current data segment. The instruction “mov [bp+300], ax” stores the word in AX to the offset attained by adding 300 to BP in the current stack segment.

Indexed Register Indirect + Offset

An index register is used with a constant offset in this addressing mode. The value contained in the index register is added with the constant offset to get the effective address. For example “mov [si+300], ax” moves the word contained in AX to the offset attained by adding 300 to SI in the current data segment and the instruction “mov [di+300], al” moves the byte contained in AL to the offset attained by adding 300 to DI in the current data segment.

Base + Index

One base and one index register is used in this addressing mode. The value of the base register and the index register are added together to get the effective address. For example “mov [bx+si], ax” moves the word contained in the AX register to offset attained by adding BX and SI in the current data segment. The instruction “mov [bp+di], al” moves the byte contained in AL to the offset attained by adding BP and DI in the current stack segment. Observe that the default segment is based on the base register and not on the index register. This is why base registers and index registers are named separately. Other examples are “mov [bx+di], ax” and “mov [bp+si], ax.” This method can be used to access a two dimensional array such that one dimension is in a base register and the other is in an index register.

Base + Index + Offset

This is the most complex addressing method and is relatively infrequently used. A base register, an index register, and a constant offset are all used in this addressing mode. The values of the base register, the index register, and the constant offset are all added together to get the effective address. For example “mov [bx+si+300], ax” moves the word contents of the AX register to the word in memory starting at offset attained by adding BX, SI, and 300 in the current data segment. Default segment association is again based on the base register. It might be used with the array base of a two dimensional array as the constant offset, one dimension in the base register and the other in the index register. This way all calculation of location of the desired element has been delegated to the processor.

Exercises

1. What is a label and how does the assembler differentiates between code labels and data labels?

2. List the seven addressing modes available in the 8088 architecture.

3. Differentiate between effective address and physical address.

4. What is the effective address generated by the following instructions? Every instruction is independent of others. Initially BX=0x0100, num1=0x1001, [num1]=0x0000, and SI=0x0100

a. mov ax, [bx+12]

b. mov ax, [bx+num1]

c. mov ax, [num1+bx]

d. mov ax, [bx+si]

5. What is the effective address generated by the following combinations if they are valid. If not give reason. Initially BX=0x0100, SI=0x0010, DI=0x0001, BP=0x0200, and SP=0xFFFF

a. bx-si

b. bx-bp

c. bx+10

d. bx-10

e. bx+sp

f. bx+di

6. Identify the problems in the following instructions and correct them by replacing them with one or two instruction having the same effect.

a. mov [02], [22]

b. mov [wordvar], 20

c. mov bx, al
d. mov ax, [si+di+100]
7. What is the function of segment override prefix and what changes it brings to the opcode?

8. What are the two types of address wraparound? What physical address is accessed with [BX+SI] if FFFF is loaded in BX, SI, and DS.

9. Write instructions to do the following.

a. Copy contents of memory location with offset 0025 in the current data segment into AX.

b. Copy AX into memory location with offset 0FFF in the current data segment.

c. Move contents of memory location with offset 0010 to memory location with offset 002F in the current data segment.

10. Write a program to calculate the square of 20 by using a loop that adds 20 to the accumulator 20 times.

